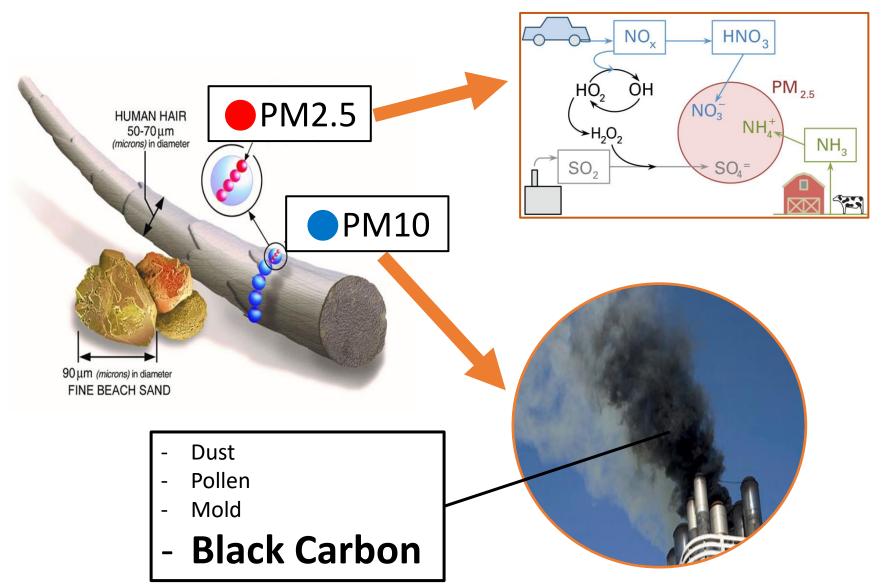
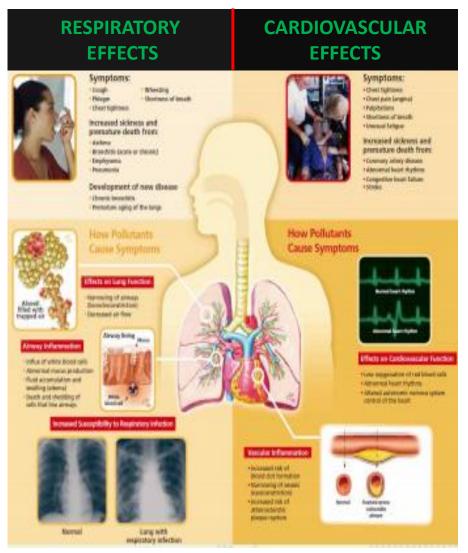


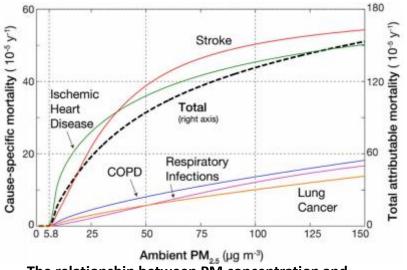
Index


Particulate Matter What's PM Damage Perspective of Maritime Industries about PM PM from Ship IMO **Current Cases for Abating PM Proposal for New Output**

1. Particulate Matter

1. Particulate Matter

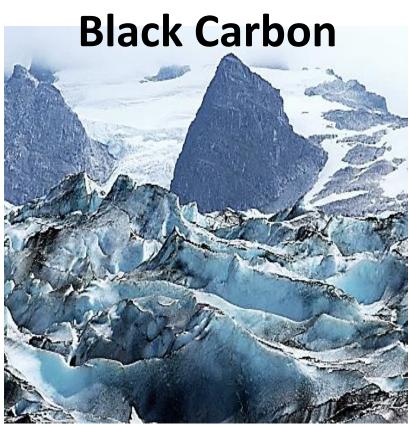

What's PM



1. Particulate Matter On Human Health

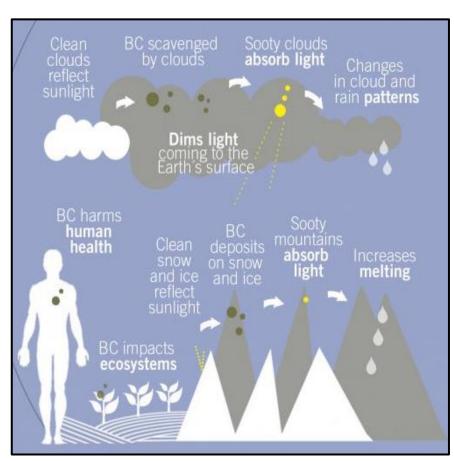
Damage

The relationship between PM concentration and mortality rate


"The IARC under the WHO classified PM as a group 1 carcinogen in October 2013"

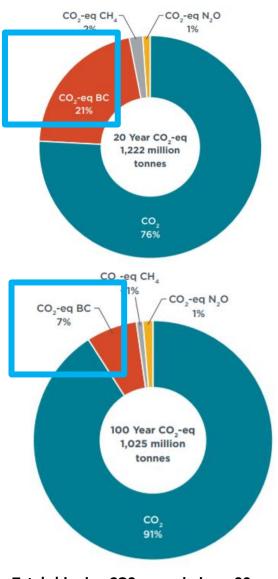
"The WHO announced that 7 million people died earlier in 2014 due to PM"

Damage



Visual Black Carbon on ice in Arctic

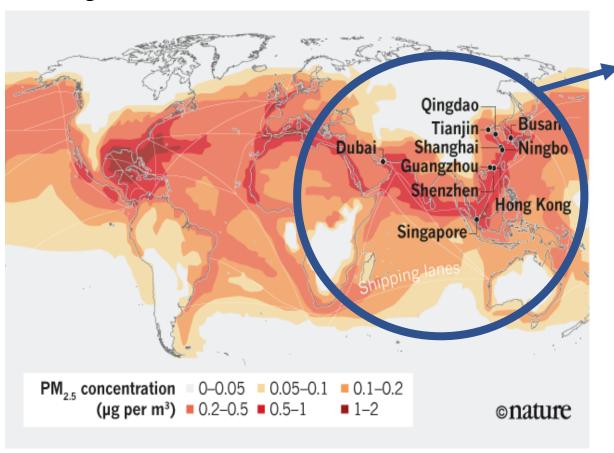
1. Particulate Matter On Environment



Damage

Infographic of Black Carbon

"BC is a dangerous local air pollutant which can also be transported across the globe."

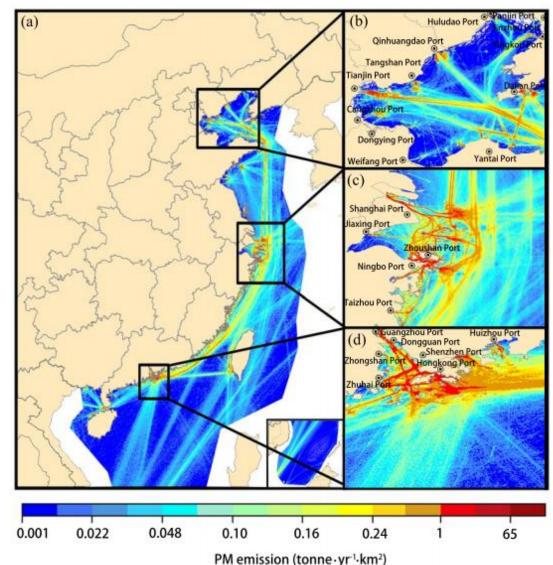

Total shipping CO2-eq emissions, 20-years and 100 year GWP, 2015

PM from Ship

Dirty 10

Asia Area

"Top 10 ports worldwide with the highest level of PM emissions"

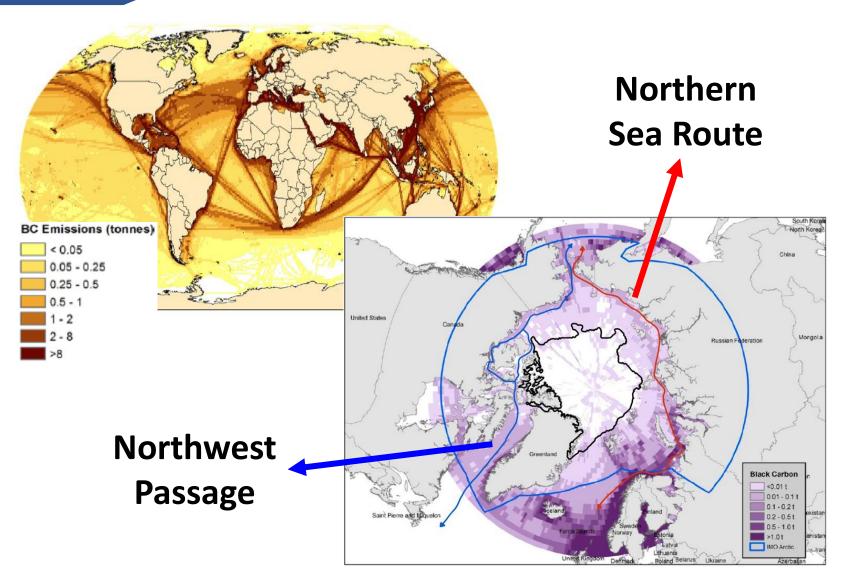

"High PM concentration along the shipping lanes"

PM from Ship

China Port

- **⊘** Bohai Rim Area (BRA)
 - Tianjin Port
 - Qingdao Port
- ✓ Yangtze River Delta (YRD)
 - Shanghai Port
 - Ningbo Port
- **✓** Pearl River Delta (PRD)
 - Guangzhou Port
 - Shenzhen Port
 - Hongkong Port

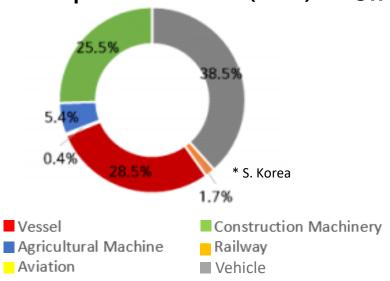
Spatial distribution of PM emissions from maritime transportation in China

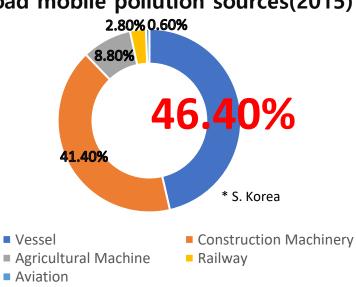

PM from Ship

Busan Port in South Korea

구분		NOx	SOx	PM10	PM2.5	VOCs
	Busan	43,755	10,659	6,607	2,458	42,207
	Incheon	49,460	12,854	8,292	2,730	54,211
total	Ulsan	47,506	47,979	5,910	2,987	98,781
emissions		104,037	64,649	33,854	16,140	85,226
	Nationwide	1,157,728	352,292	233,177	98,806	1,010,771
	Busan	17,997	7,487	1,022	928	854
	Incheon	3,873	1,584	237	217	544
ship's	Ulsan	8,147	3,468	464	421	288
emissions		15,225	6,172	875	797	1,196
	Nationwide	151,735	38,467	7,091	6,539	20,970
	Busan	41.1	70.2	15.5	37.8	2.0
The ratio of	Incheon	7.8	12.3	2.9	7.9	1.0
ship emissions to total	Ulsan	17.2	7.2	7.9	14.1	0.3
emissions(%)		14.6	9.5	2.6	4.9	1.4
	Nationwide	13.1	10.9	3.0	6.6	2.1

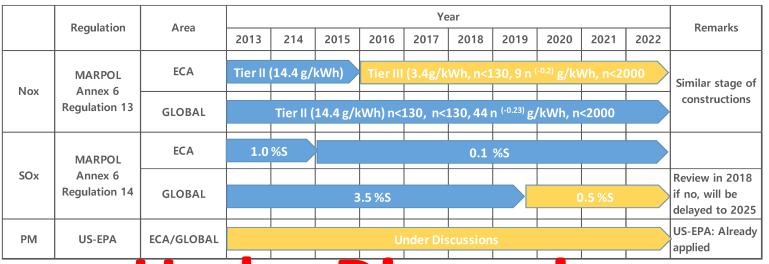
PM from Ship




PM from Ship

	Total Emissions	Ship's Emissions	The Ratio	
NOx	1,135,743	144,030	(12.7%)	
SOx	343,161	39,074	(11.4%)	
PM10	97,918	6,983	(7.1%)	
PM2.5	63,286	6,423	(10.1%)	* S. Korea (2014)

PM emission amount of mobile pollution sources(2015)

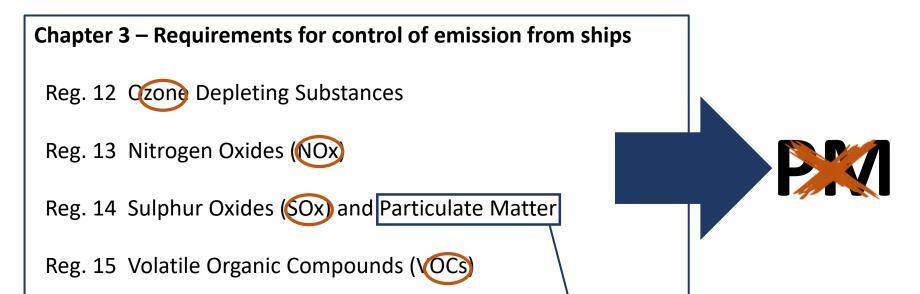


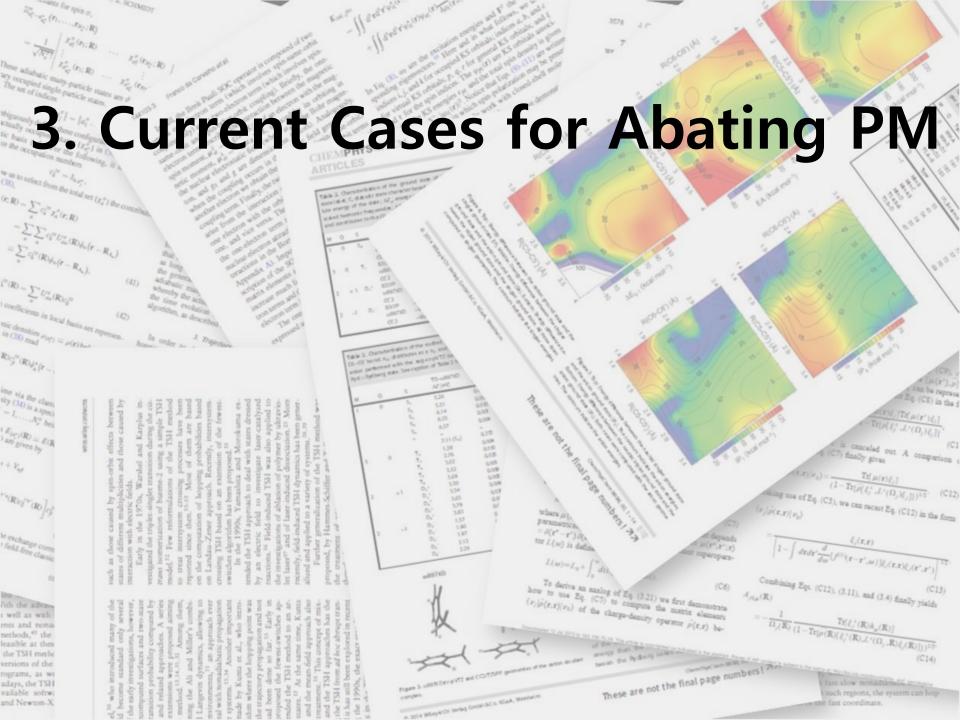
PM emission amount of Off road mobile pollution sources(2015)



IMO

Under Discussions...




IMO

On MARPOL ANNEX VI

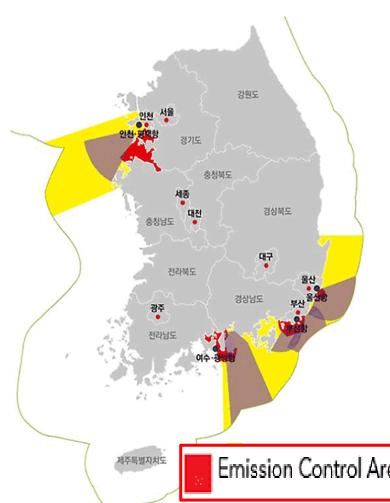
There are no provisions for PM in regulation 14, but it is recognized that the sulphur content of fuel oil relates to the PM of the exhaust. PM consists of particles of soot or smoke resulting from the burning of, primarily, heavier oils. It is considered to be a major health hazard as particulates may penetrate deep into the lungs and blood and cause cancer (see also Black Carbon discussion below).

*Note by the International Maritime Organization to the UNFCCC Talanoa Dialogue

Goal: Reducing port PM by more than 50% by 2022

*MOF-MOE

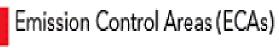
China I	China II	•••	•••	China V
20%	40%	•••	•••	92%


Engine type	Per-cylinder displacement (L)	Rated net power (kW)	PM (g/kWh)	
Category 1	<0.9	≥37	0.40	
	0.9-1.2	0.9-1.2		
	1.2-5	0.20		
Category 2	5-15	0.27		
	15-20	<3,300	0.50	
	15-20	≥3,300	0.50	
	20-25	0.50		
	25-30		0.50	

Engine type	Per-cylinder displacement (L)	Rated net power (kW)	PM (g/kWh)
Category 1	<0.9	≥37	0.30
	0.9-1.	0.14	
	1.2-5		0.12
Category 2		<2,000	0.14
	5-15	2,000- 3,700	0.14
≥3,70 <2,00 15-20 2,000 3,300	≥3,700	0.27	
	15-20	<2,000	0.34
		2,000- 3,300	0.50
		≥3,300	0.50
	20.25	<2,000	0.27
20-25 25-30	20-25	≥2,000	0.50
	25.70	<2,000	0.27
	25-30	≥2,000	0.50

Emission Control Areas (ECA)

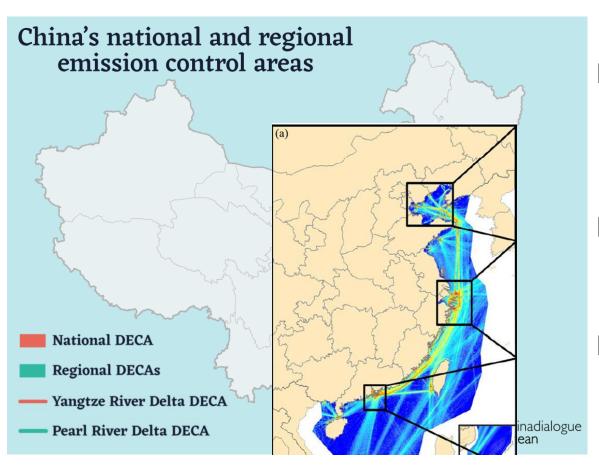
Case of South Korea


"No relation to international ECA designated by the IMO"

From 1. 9. 2020:

Mandatory to use 0.1% Sulphur contents fuel while at berthing and anchoring

From 1. 1. 2022:


Mandatory to use **0.1%** Sulphur contents fuel while navigating ECA

Domestic Emission Control Areas(DECAs)

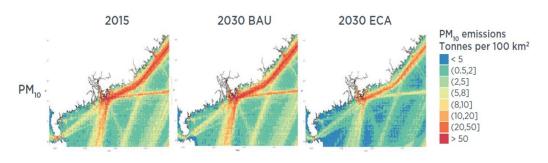
Case of China

Regional DECAs

Bohai Rim Area, Yangtze River Delta, Pearl River Delta

National DECAs

Coastal control areas Inland control areas


Reduction figures

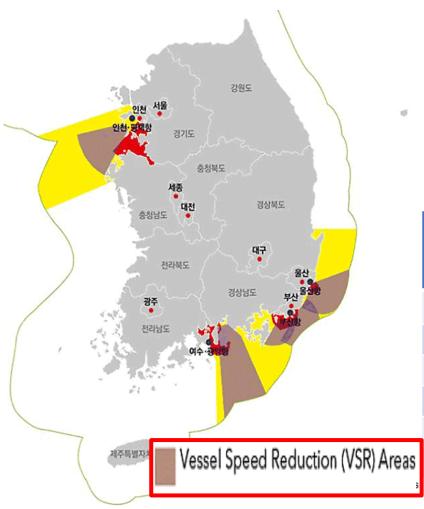
0.50% for ships entering ECA

Effects of ECA

	Emiss	Change in 2030		
Pollutant	2015	2030 BAU	2030 ECA-control	emissions due to the ECA
so _x	122	44.4	13.1	-70%
NO _x	195	326	286	-12%
PM ₁₀	16.6	16.1	7.73	-52%

Distribution of ship emissions in the GPRD region in 2015 and 2030, BAU versus with an ECA

Predicted PM Reduction

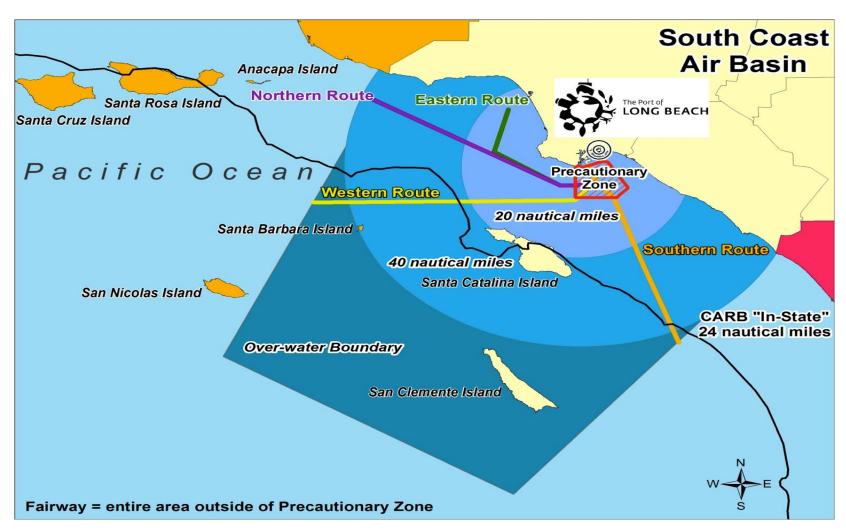

USA ECA: -74%

MED ECA: -23.7%

Vessel Speed Reduction(VSR) Program

Case of South Korea

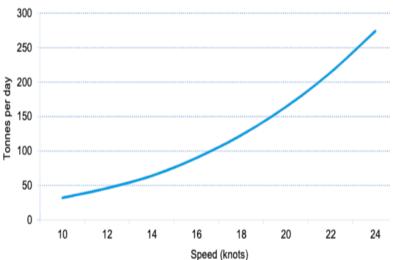
Area
20NMs in radius from
specific lighthouse in each port


Advantage entry/leave fees are discounted

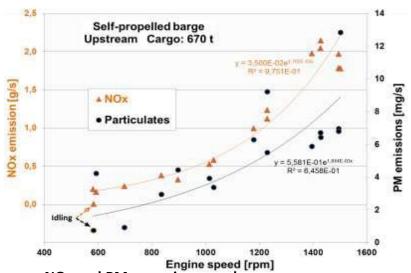
Chin Ton	Recommended speed (kts) for port					
Ship Type	Busan Ulsan		Yeosu, Gwangyang	Incheon		
Container ship	12	12	12	12		
General cargo ship	10	-	10	10		
Car carrier	12	-	-	-		
Crude oil carrier	-	10	-	-		
Chemical carrier	-	10	-	-		
LNG carrier	-	-	10	10		

Vessel Speed Reduction(VSR) Program

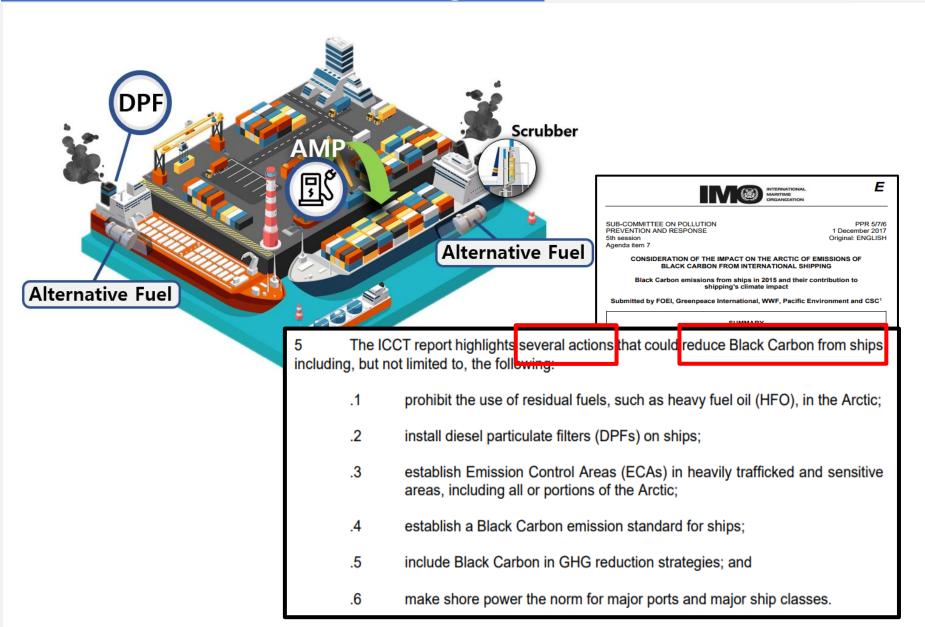
Case of USA-Los Angeles Port and Long Beach Port


Advantages of VSR

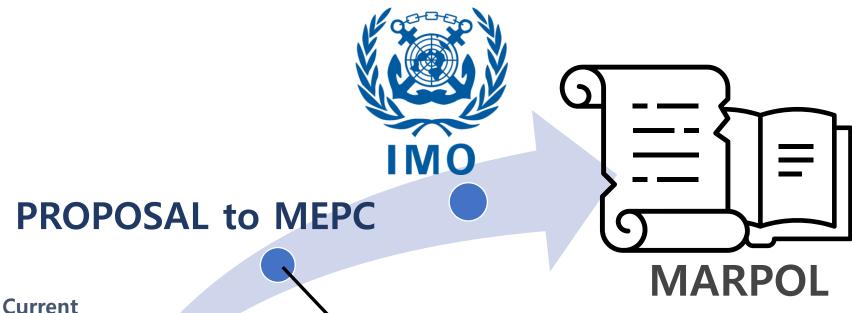
- 1. Reduces all pollutants
- 2. All ships can do it
- 3. Easy to Monitor


Table ES.3 Emissions Reduction due to VSR

Percent Reduction in Emissions due to VSR					
CO_2 NOx^{\dagger} $PM_{2.5}$ EC OC $SO_4^{2}-H_2O$					
61	56	69	53	70	75


Note that the 56% reduction in NOx is attributed to change in fuel (HFO to MGO) and VSR

Average fuel consumption of a 14,000-TEU container ship at different speeds



Situation

Request for Discussion about Legislating to Regulate PM Emission from Ships

: 3 Step Work Plan

3 STEP WORK PLAN

Phase 1

Considering Preceding Conditions for New Reg.

Phase 2

Selecting Effective Abatement options

Phase 3

Legislating Regulation

- CurrentSituation
- Measuring Method
- Abatement Strategies
- Applicability

- Policy
- Exhaust Gas Treatment
- Engine Technology
- Fuel Technology

- Target Value
- New Regulation

Phase 1

Considering Preceding Conditions for New Reg.

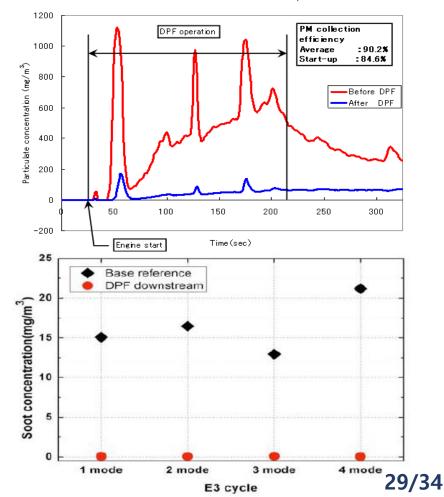
Current	Measuring	Abatement	Applicability
Situation	Method	Strategies	
 Emission Damage Discussion	 Measurement considering differences between PM and BC 	Abatement PolicyAbatement Technology	 Difference between Nations Technology Level Policy Direction Progress of Technology

Phase 2 Selecting Effective Abatement options

Political Option

Establishment of the 'PECA'

- ✓ MARPOL Annex VI Appendix III
- ✓ Where to Establish
 - (Domestic Law O ex : S. Korea, China)
 - (Domestic Law X ex : Mediterranean Sea)
- ✓ Regulatory Level
 - based on PM Regulation (Upcoming)


Applying of 'VSRP'

- ✓ Reduction rate of speed
- ✓ VSR Program Zone
- ✓ Speed Monitoring
- ✓ Compensation

Technical Option

DPF(Diesel Particulate Filter)

PM concentrations at vessel departure

Phase 3

Legislating Regulation

- Target Value
- New Regulation

"XX% Reduction of PM from Ships by 20XX Globally"

Legislation of an Independent Regulation that Regulates PM from Ships.

References

#4 https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM

- #5 Env. Sci. & Technol., 49, 2015
 - 기후변화에 의한 미세먼지 발생과 건강영향 그리고 국제협력_국내IP 환경동향보고
- #6 https://www.worldatlas.com/what-is-acid-rain.html
 - March 2012 issue of Nature Geoscience., Aron Stubbins
- #7 https://www.ccacoalition.org/en/slcps/black-carbon
 - Source: Olmer, Comer, Roy, Mao, & Rutherford (2017), submitted as document PPR 5/INF.15
- #9 Pollution: Three steps to a green shipping industry
- 2016S.P. SinghNature News & Comment
- #10 Mingliang Fu et al 2017 Environ. Res. Lett. 12 114024
- #11 국립환경과학원, 국가 대기오염물질 배출량 서비스(http://airemiss.nier.go.kr)의 통계 재편집 및 작성
- #12 Global-Marine-BC-Inventory-2015_ICCT-Report
- #12 Prevalence of heavy fuel oil and black carbon in Arctic shipping, 2015 to 2025 BRYAN COMER, NAYA OLMER, XIAOLI MAO, BISWAJOY ROY,

DAN RUTHERFORD MAY 2017

- #13 국립환경과학원 연도별 배출량 통계(2014)
 - 국립환경과학원, 국가 대기오염물질 배출량 서비스(http://airemiss.nier.go.kr)의 통계(2015)
- #15 Note by the International Maritime Organization to the UNFCCC Talanoa Dialogue
- #17 Mingliang Fu et al 2017 Environ. Res. Lett. 12 114024
 - (Marine engine emission standards for China's domestic vessels | International Council on Clean Transportation, 2020)
- #18 & 21 (MINISTRY OF OCEANS AND FISHERIES>What's New VESSEL SPEED REDUCTION(VSR) PROGRAM TO START DECEMBER THIS YEAR, 2020)
- #19 https://chinadialogueocean.net/8054-curbing-deadly-shipping-emissions/
- #20 ICCT COSTS AND BENEFITS OF A PEARL RIVER DELTA EMISSION CONTROL AREA
 - https://www.euractiv.com/section/shipping/opinion/a-roadmap-to-cut-shipping-emissions-in-the-mediterranean/
 - US EPA
- #22 THE PORT OF LOS ANGELES_Vessel Speed Reduction Incentive Program Guidelins
- #23 Drewry / HAL / California Air Resources Board
- #29 Mitsui O.S.K. Lines. 2020. MOL Develops Marine Use Diesel Particulate Filter | Mitsui O.S.K. Lines.
- #29 선박배출대기오염원(PM/BC) 기후변화 영향평가 및 저감기술개발 최종보고서, 해양수산부, 해양수산과학기술진흥원

Thank you

Question